
Video Compression in the Neighborhood: An
Opportunistic Approach

Dimitris Chatzopoulos∗, Kathleen Sucipto∗, Sokol Kosta∗†, Pan Hui∗
∗System and Media lab, Hong Kong University of Science and Technology

†Sapienza University of Rome

Abstract—The proliferation of mobile devices com-
bined with advances in the area of low-power wireless
communication, such as Wi-Fi Direct and Bluetooth
4.0, gave rise to a new computation paradigm known
as Device–to–Device (D2D) offloading. In this scenario,
devices collaborate with each other using short wireless
links to create ad-hoc P2P networks for distributed
task execution. Experiments on human movement, a
non-negligible factor in the D2D context, have shown
that people move in group or meet frequently, which
suggests that D2D is possible. In this work, we ex-
amine the case of parallel compression of smartphone
recorded videos with the help of nearby devices. First,
we present a mathematical formulation of the problem
that optimizes the compression time on the number of
nearby helping devices, and show that the problem can
be mapped as a water-filling problem. Then, we present
real results of the compression time and energy when
the compression is performed on one device and when
it is parallelized among collaborating devices. To obtain
these results, we implemented an Android application
that is able to detect nearby devices, connect with them
using Wi-Fi Direct, send video chunks for compression,
receive and merge compressed chunks into one full
compressed video.

I. Introduction
State-of-the-art mobile devices are becoming increas-

ingly powerful, but at the same time the need for com-
putational resources and energy of mobile applications is
increasing with the same pace. To be properly functional
and provide good quality of experience to the users, many
applications require more resources than those provided by
the device. This obstacle triggered the research in Mobile
Cloud Computing [1], [2], where parts of a mobile appli-
cation are offloaded for execution to remote cloud servers.
However, mobile cloud computing solutions require (i)
dedicated cloud servers that can provide pre-specified
functionality, and (ii) Internet connectivity. Moreover,
these requirements imply increased monetary costs due to
the utilization of the cloud facility.

In this work, we consider the case of a specific applica-
tion, video compression of mobile recorded videos, which
can benefit from offloading. The continuous quality in-
crease of the smartphones’ cameras allows us to take better
pictures and videos, but at the same time it sacrifices
device’s storage. An off-the-shelf last generation smart-
phone requires around 1 MB per second of captured video,
since the videos are stored as raw data. Compressing the

video could save up to 95% of the storage, depending on
the compression settings. Unfortunately, the compression
requires as much time as the length of the video, which
means that the device needs to spend more resources and
more energy if the compression is fully performed on the
device. However, splitting a video into smaller chunks is a
much faster and less expensive procedure. In the same way,
merging small video chunks into a full video file is a fast
and cheap process. This suggests that using a technique
that compresses a video file by first splitting it and then
by compressing the individual parts in parallel on multiple
devices could reduce the total compression time and total
energy spent for compression.
For example, in our experiments we show that it takes

around 100 seconds on a Xiaomi MI3 device and around
400 seconds on a Samsung Galaxy S2 device to compress
a video of 100 seconds (97.44 MB) locally on the device,
while it takes only 5 seconds to split the video into 10
equal pieces on both devices. Sending the chunks to nearby
devices using Wi-Fi Direct, which can reach transmission
rate up to 250 Mbps [3], can speed up the compression by
parallelizing the process.
In this work, we examine the case of utilizing nearby

mobile devices in order to parallelize the process of
video compression. We consider a PNP block structure
(pre-processing, n tasks, post-processing), as proposed in
Serendipity [4]. Our block structure is composed by i) the
pre-processing task, that splits the video in smaller pieces,
ii) the offloading step, that sends the video chunks to
n nearby devices, and iii) the post-processing task, that
collects the compressed chunks from the nearby devices
and merges them into one video.
Any mobile user who is utilizing our service has to

define a threshold that determines whenever she is willing
to help others. The threshold is of the type: “If my
battery level is more than X%, I am sharing my resources”.
The thresholds can be associated with multiple resources.
After compressing another user’s video, a user receives an
acknowledgement that she can use when asking others to
compress her videos.

A. Motivating Example
Let’s consider a scenario with three users, Lencia, Mary,

and Richard, starting from the left, as in Figure 1. Let’s
assume that Mary has captured a 10 minutes video with

Re
co

rd
Sp

lit
O

ffl
oa

d
M

er
ge

Co
m

pr
es

s

Send

ReceiveCo
m

pr
es

s

Co
m

pr
es

s Send

Receive

Co
m

pr
es

s
to

ta
lly

 th
e

w
ho

le

vi
de

o

Video Compression with
the assistance of nearby devices

tim
e

Video Compression
in smart device

Figure 1: The user in the middle, instead of compressing
the video by herself, she is asking for help from two nearby
users and by doing that she decreases the required time.

her Xiaomi MI3 smartphone, which has a camera of 13
MPixel, that she wants to compress. From our experi-
ments we found that the video file is around 600 MB.
Compressing the file in her device, in the ideal case that
the device was fully dedicated for compression, would take
Mary’s around 10 minutes. However, utilizing our solution,
she can split the video into 3 chunks, offload one chunk
to Lencia, one to Richard, and keep the third one for
herself. Parallelizing through Device–to–Device offloading,
the compression time can be reduced by almost three
times, considering that video splitting and merging is
much faster than compression and the network connection
will be performed using Wi-Fi Direct, which promises
device-to-device transfer speeds of up to 250Mbps and
connection range of up to 200 meters [3]. In our system,
collaborating users are unaware of the underlying video
compression process, which is done transparently by the
smartphone device.

One important factor that influences the chances of the
Device–to–Device offloading, is the mobile nature of the
users. For this system to work, devices should be connected
for enough time to allow the requester device to send
the video chunks to the helper devices, for the helper
devices to perform the compression, and for the helper
devices to send the compressed video chunks back to the
requester. Studies on human mobility have shown that
people move in groups and meet frequently with each other
[5], [6]. As can be seen from Figure 2, which shows the
Inverse Cumulative Distribution function of the contact
duration between mobile users for four different datasets,
the contact duration between two devices will be in the
order of tens or hundreds of seconds with high probability.
The plot is produced for the first day of Infocom 05 and its
41 users [6], the first day of Infocom 06 and its 78 users [6],
the whole duration of Humanet, which is 1 day and has
56 users [5], and for the whole duration of MDC which is
1 month and has 64 users [7].

II. System Model

We assume a set of mobile users U interconnected in
an ad-hoc manner and without any delay or bandwidth
guarantees. Any participating user’s device is able to

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000 100000 1e+06 1e+07

P
[

T
 >

 t
]

Time (s)

Inf. 05
Inf. 06

Humanet
MDC

Figure 2: The inverse cumulative distribution function of
the contact duration of 4 different datasets.

compress a video1. Function C(·) is a compression function
that takes as input any video v of length vt seconds and
size vs MB and produces a video ṽ of the same duration
(i.e. ṽt = vt), but with smaller size ṽs << vs:

ṽ = C(v) (1)

It is worth mentioning that recorded videos by mobile
users via their mobile devices are not processed and are
stored as raw data. For example, a video of one minute
in a Xiaomi MI3 device with default settings occupies 60
MB of storage. Video compression is a time and energy
consuming process. According to our experiments, which
are presented in Section IV, the time needed to compress
a video is a linear function of the duration of the video, if
the codec used is H.264 and the compression MPEG4. We
use a linear function f (res)(vt) to measure the time needed
to compress a video v that has length vt seconds given the
available resources res.
User i has one video vi to compress with size vis. We con-

sider the compression function as expressed in Equation
1, which is user independent and is built in any Android
device. Let’s assume that user i at time t has Ni(t)
neighboring devices with whom she can connect in an ad-
hoc manner. Any user j who participates in our system,
following the principles of hidden market design [8], has
imposed a number of conditions, in terms of thresholds,
under which she is willing to share her resources in order
to help others. After helping another user to compress
a video, a collaborating user earns virtual credits that
she can use in order to compress her videos. Virtual
credits make the system work by incentivizing people to
collaborate and by reducing the chances for selfish users to
participate in the system. If one user does not collaborate
by sharing her resources, she will soon finish her credit and
will not be able to ask for help in the future. Assuming
that the user k has ck credits before helping another user,
then she will have ck+γvlt credits after compressing user’s
l video vl. We use γ > 0 parameter in order to motivate
users to participate in the system.
The selection of nearby devices to offload a video is not

obvious. We define the probability of user i to be connected
to user j at time t as pij(t). Considering this probability,

1This functionality can be provided by tools like FFmpeg and is
easily integrable in any mobile OS: https://www.ffmpeg.org/.

the connectivity conditions, and the shared resources by
each nearby device, any user who wants to compress a
video with the help of her nearby devices should choose
the most suitable devices for helping with this task. Then,
the device should split the video into smaller chunks based
on the number of chosen helper devices. In the next section
we present how the video can be split optimally.

III. Problem formulation

We consider a user i that has a video vi of size vis MB
and is connected at time t with Ni(t) nearby devices. User
i can split the video into smaller chunks, offload the chunks
for compression to the nearby devices, and then receive
and merge the compressed chunks. We use a vector x to
represent the partition of the original video into chunks.
The array has |Ni(t)|+1 elements, with each element being
non negative and smaller than 1, while the sum of all
elements is equal to 1. If xl > 0, then xl · vt corresponds
to the duration in seconds of the chunk l, while are xl · vs
corresponds to the size in MB of the chunk l. We assume
that the chunk l, for 1 ≤ l ≤ |Ni(t)|, will be sent to
the nearby device l, while the |Ni(t)|+ 1’th chunk will be
compressed by the initiator of the compression (i.e. user
i). The formal problem formulation is as follows:

min
x

(
split(x) + compress(x) +merge(x)

)
(2)

s.t
|Ni(t)|∑
l=1

xl ≤
ci
vit
,

|Ni(t)|+1∑
i=1

xl = 1, 0 ≤ xl ≤ 1 ∀ l (3)

where the split and merge functions depend linearly on the
number of the video chunks that are created and merged.
These can be expressed as linear functions as follows:

split(x) = ξsp||x||0 + βsp (4)
merge(x) = ξmr||x||0 + βmr (5)

where ξ and β are the parameters of the line.Given that
the compression is parallelized, minimizing the time we
have to minimize the time needed to perform the slowest
compression. The offloaded compression part is composed
by the video transmission, the remote compression, and
the reception of the compressed video. Assuming that the
bandwidth between user i and the nearby use l is Bl and
the resources she is providing are Rl, the compression is:

compress(x) = max
xl

(
send(xl) + process(xl) + receive(xl)

)
= max

xl

(
xl ·

vis
Bl

+ xl ·
vit
Rl

+ xl ·
ṽis
Bl

)
= max

xl

((vis
Bl

+ vit
Rl

+ ṽis
Bl

)
xl

)
= max

xl

(γlxl)

where γl is defined as the delay in seconds on every nearby
device. If we define Γ = diag(γl) then, by using the fact

that the infinity norm equals to the biggest element of one
vector, the compress function can be formulated as:

compress(x) = ||Γx||∞ (6)

A. Mobility
Due to human mobility, contact duration between pairs

of devices is variable. In our video compression application,
it can happen that the requester device sends the video
chunk to a helper device but then they disconnect. If they
meet again after a long time, the helper device sends the
compressed video chunk to the requester. This way, the
respective γl of the helper device will be very high. We
include a multiplicative penalization factor in our system
for each participating device, so to avoid selecting helper
devices with high values of γl. The penalty vector has one
entry for each device, so it is of size |Ni(t)|+ 1:

p =
(

1
pi1

,
1
pi2

, . . . ,
1

piNi(t)
, 1
)

(7)

with the requesting device having penalty factor equal to
1, meaning that it should not be penalized. The compres-
sion function now becomes:

compress(x) = ||(Γ + diag(p))x||∞ = ||Ax||∞ (8)

and by defining αl = γl + p(l), the optimization problem
can be written as:

min
x

(
||Ax||∞ + (ξsp + ξmr)||x||0

)
(9)

s.t
|Ni(t)|∑
l=1

xl ≤
ci
vit
,

|Ni(t)|+1∑
l=1

xl = 1, 0 ≤ xl ≤ 1 ∀ l (10)

However, as it is shown in our experiments in the next
section both, ξsp and ξmr are very close to 0 and for
the rest of the paper we will assume that both of them
functions are constants and not related to the number of
the videos. It is also well know that l0 norm minimization
is an NP-complete problem and usually approximation
algorithms are used [9]. In order to solve the problem we
are rewriting it in an epigraph form:

min
x,τ

τ (11)

s.t: 0 ≤ Ax ≤ τ (12)
|Ni(t)|∑
l=1

xl ≤
ci
vit
,

|Ni(t)|+1∑
l=1

xl = 1, 0 ≤ xl ≤ 1 ∀ l (13)

The lagrangian function is then:

J(x, τ, λ1, λ2, λ3, λ4, µ) = τ +
|Ni(t)|+1∑

l=1
λl1(αlxl − τ)

+
|Ni(t)|∑
l=1

λl2(xl −
ci
vit

) + µ(
|Ni(t)|+1∑

l=1
xl − 1)

+
|Ni(t)|+1∑

l=1
λl3(xl − 1) −

|Ni(t)|+1∑
l=1

λl4(xl) (14)

The KKT conditions, the primal and dual feasibility con-
straints and the complementaty slackness constraints are:

∂J

∂τ
= 0⇔ 1−

|Ni(t)|+1∑
l=1

λl1 = 0;

∂J

∂xl
= 0⇔ λl1αl + λl2 + λl3 − λl4 + µ = 0;

|Ni(t)|+1∑
l=1

xl = 1; Ax ≤ τ ;

λl1(αlxl − τ) = 0; λl2(xl −
ci
vit

) = 0;

λl3(xl − 1) = 0; λl4xl = 0;
λl1, λ

l
2, λ

l
3, λ

l
4, µ ≥ 0; 0 ≤ xl ≤ 1.

There are two general cases in the solution of the opti-
mization problem. In the one case exists a λl2 or a λl3 that
is not zero. In this case there exists a xl : xl = min(1, ci

vi
t
).

If l 6= |Ni(t)| + 1 then the video is split in two parts
and xl% of it is offloaded to device l while the rest is
compressed locally. Else, in the case of l = |Ni(t)|+ 1 the
video is compressed locally. However, in the general case
λl2 = λl3 = 0 the solution is a classic water filling case that
depends on αl’s of xl that are not zero [10].

IV. Experiments
We used the FFmpeg [11] compression package as the

underlying software in our Android app to implement the
compression functionality. To conduct our experiments,
we used one Xiaomi MI3 deviceand a Samsung Galaxy
S2 device.We measured the compression time, the time
it takes to split a video into small chunks, the time it
takes to transmit video chunks of different size from one
device to another, and the time it takes to merge several
chunks into one full video. We also measured the energy
consumed by the Samsung phone for each of the above
tasks. To measure the energy, we used the widely adopted
Monsoon Power Monitor2, which samples the power of the
device at a frequency of 5 KHz. However, due to physical
limitations—the Xiaomi MI3 does not have a removable
battery, which is a requirement for the Monsoon Power
Monitor—we only measured the energy on the Samsung
Galaxy S2 device. We selected MPEG4 compression, which
is based on H.264 code [12], since it is a standard and can
achieve high compression rate. In our experiments, we used
a framerate equal to 24, a video screen size of 320×240, an
aspect ratio of 4:3 and, a constant rate factor of 20. We
recorded a list of videos and we present their duration,
initial size and size after the compression in Table I.

Figure 3a shows that the size of the video decreases
by around 89% after the compression. We should notice
that this rate does not depend on the device, since it is
only related to the settings of the encoder. On the other

2https://www.msoon.com/LabEquipment/PowerMonitor/

Duration Initial (MB) Compressed (MB)

00:00:01 1.79 0.21
00:00:02 2.61 0.43
00:00:05 5.54 0.96
00:00:10 10.58 0.86
00:00:20 20.16 2.23
00:00:30 29.94 2.24
00:00:50 49.35 4.89
00:01:40 97.44 13.42
00:08:20 483.26 53.42

Table I: Video files used in the experiments.

hand, the time needed to compress the file is related to the
processing power of the device, as can be seen in Figure
3b. Figure 3c shows the energy consumed by the Samsung
Galaxy S2 device for compressing each of four videos with
length 10s, 50s, 100s, and 500s.
We also measured the time it takes to transmit videos of

different size between devices using Wi-Fi Direct in a peer–
to–peer mode under several environmental conditions and
mobility patterns. In more details, we examined six dif-
ferent cases with two devices: (i) standing close to each
other in the same desk, (ii) standing in the same room in
a 3 meters distance, (iii) standing in 10 meters distance
in a busy hallway with many obstacles and people, (iv)
standing in an open yard area in a 25 meters distance,
(v) moving in an open yard area with a distance between
2 and 25 meters, and (vi) walking nearby, in a 1 meter
distance in a busy area. The experiments were repeated
multiple times and the results were averaged. Figure 3d
shows the average time required to transfer a video of 50
seconds, 49.35 MB, (left y-axis) and the bandwidth of the
Wi-Fi Direct connection (right y-axis) in each scenario.
The errorbars represent the standard deviation.
We also measured the energy spent by the Wi-Fi Di-

rect interface when transmitting and receiving, which
is: 4.07674772 · 10−8Joules/bit for transmission and
5.963156535·10−8Joules/bit for reception. To obtain these
results, we exchanged a video of 483.26 MB between a
Samsung Galaxy S2 and a Xiamo MI3 device in the setting
of the first case. The experiments were performed ten times
and the results were averaged.
Then, we measured the time needed to split the afore-

mentioned videos into 2, 3, 4, 5, and 10 chunks, presented
in Figure 3e. Due to the lack of space and to the fact that
the results were similar in both devices, we only show the
results obtained with the Xiaomi MI3. We also performed
the inverse experiment, measuring the time needed to
merge small video chunks of 1, 2, 5, 10, 20, and 50 seconds
into a full video, shown in Figure 3f. The merging process
is performed by merging the video chunk with a copy of
itself 2, 3, 4, 5, and 10 times.
In Figure 4a we show the energy spent on the Samsung

Galaxy S2 to split a 50 seconds long video (49.35 MB)
into 2, 3, 4, 5, and 10 smaller chunks, while in Figure 4b
we show the energy spent on the device to merge multiple
copies of 5 seconds long video chunks. Using the results

 0

 5

 10

 15

 20

 25

10 50 100 200 300 400 500

S
iz

e
o

f
C

o
m

p
re

ss
ed

 V
id

eo
 (

M
B

)

Size of Initial Video (MB)

compression rate
Fit line: 0.04371x+0.24521

(a) Compression Rate.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

110 50 100 200 300 400 500

T
im

e
to

 c
o

m
p

re
ss

 (
s)

Length of Initial Video (s)

Samsung Galaxy S2
Fit line: 3.29223x+21.13548

Xiaomi MI3
Fit line: 1.26336x+-8.53294

(b) Compression Duration.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

110 50 100 200 300 400 500

E
n

er
g

y
 t

o
 c

o
m

p
re

ss
 (

J)

Length of Initial Video (s)

Samsung Galaxy S2
Fit line: 7.86411x+-8.06661

(c) Compression Energy needs.

 0

 5

 10

 15

 20

 25

 30

 35

desk
room

busy hallw
ay

quiet yard

m
oving

 in yard

w
alking

 together

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

T
ra

n
sf

er
 t

im
e

(s
)

B
an

d
w

id
th

 (
M

b
p
s)

Transmission environment

file transfer time
bandwidth

(d) Transmit using Wi-Fi Direct.

 0

 5

 10

 15

 20

 25

 30

 35

10 50 100 500

S
p
li

t
ti

m
e

(s
)

Video (full) duration (s)

2 pieces
3 pieces
4 pieces

5 pieces
10 pieces

(e) Split.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1 2 5 10 20 50

M
er

g
e

ti
m

e
(s

)

Video (chunk) duration (s)

2 pieces
3 pieces
4 pieces

5 pieces
10 pieces

(f) Merge.

Figure 3: Basic characteristics of video compression in terms of process duration, energy needs and data transmission.

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 10

S
p

li
t

E
n

er
g

y
 (

J)

Number of splits

(a) Split.

 0

 1

 2

 3

 4

 5

 6

 7

2 3 4 5 10

M
er

g
e

E
n

er
g

y
 (

J)

Number of videos

(b) Merge.

Figure 4: Energy required on the Samsung Galaxy S2 to:
a) split a video of 50 seconds into smaller videos, and b)
merge videos of 5 seconds into a longer video.

of the experiments, one can easily see that by distributing
the compression process on more than one device, the pro-
cessing time and the energy consumption will be reduced.

As an example, let’s consider a 50 seconds (49.35 MB)
video that need to be compressed by a Samsung Galaxy
S2 device. According to our experiments, it takes around
158 seconds and around 362 Joules of energy on average
if the compression is fully performed on the device (see
Figure 3b and Figure 3c). Let’s now assume that the device
splits the video into 5 equal chunks of 10 seconds, each
chunk is around 10 MB. This process takes 3 seconds (see
Figure 3e) and consumes around 4 Joules (see Figure 4a).

Considering the scenario where devices are on the same
desk, the data rate is around 45 Mbps (see Figure 3d).
Sending four of the five chunks to the nearby devices—
the last chunk will be compressed by the device itself—
it takes less than 8 seconds (4 chunks × 10 MB sent at
45 Mbps), and consumes less than 14 Joules of energy
(sending 40 MB with ∼ 4.07 ·10−8J/b). Then, the parallel

compression time is guided by the slowest device, which in
our case is the Samsung Galaxy S2, and it takes around
43 seconds to compress the 10 seconds video chunk (see
Figure 3b). As for the energy consumed on the considered
device, from Figure 3c we can see that the energy spent
to compress the 10 seconds chunk is around 84 Joules.

Phone

D2D

0 20 40 60 80 100 120 140 160
Time (s)

Split Tx Compress Rx Merge

(a) Time break-down.
Phone

D2D

 0 50 100 150 200 250 300 350 400
Energy (J)

(b) Energy break-down.

Figure 5: Time and energy
of compression when performed
fully on the phone and when
distributed using D2D.

The time and energy
needed to receive the
four compressed 10
seconds video chunks
(each of size 0.86 MB
now, see Table I) from
the remote devices are
0.15 seconds and 0.43
Joules, respectively
(4 chunks × 0.86
MB received at 45
Mbps consuming
∼ 5.96 · 10−8J/b).
Finally, the time and
energy spent to merge
the five compressed

chunks in a unique video are around 3 seconds (see
Figure 3f) and 6 Joules, (see Figure 4b) respectively. To
summarize, the total time and energy spent during the
parallel compression process are around 57.15 seconds
and 108.43 Joules, respectively. Compared to the case
when the compression was performed fully on one device
(158 seconds and 362 Joules), we have an improvement of
almost 3 times in terms of compression time and of more
than 3 times in terms in energy, as shown in Figure 5.

V. Related Work

Authors of [13], motivated by the same factors presented
in this work, i.e. high computation resources and energy
needs for video compression on mobile devices, propose
a cloud assisted video compression solution. Their ap-
proach offloads the video to a cloud server and executes
remotely the most intensive part of the video compression
algorithms, that is the motion estimation component.
Furthermore, authors of [14] deal with the applicability of
H.264 video encoder on mobile devices and propose a mod-
ularization of the encoder. They also propose three differ-
ent offloading schemes for their proposal, but they don’t
implement any real system and evaluate their performance
only using simulations. Further, authors of [15] analyze
the energy costs of transferring files between devices using
3G, Wi-Fi, and Bluetooth. Moreover, they also analyze the
energy consumption of file compression and decompression
and examine the benefits that these techniques can bring
to the file transfer in terms of latency and energy. However,
their study is only limited to file transfer and doesn’t
consider computation offloading. Authors of [16] use a face
detection algorithm in video streaming to prove that a
device with limited resources is not able to deal with such
intensive operation, and argue that a possible solution
could be to offload the heavy computation to the cloud.

Serendipity [4] is one the most recent and prominent
works related to Device–to-Device computation offloading.
The authors propose and implement a framework that uses
nearby devices for distributed task computation. They
show, through real experiments, that the P2P network
of collaborative devices reduces the execution time of the
considered tasks. In this work, we advance on the model
presented in Serendipity and show that the distributed
video compression on a Device–to–Device scenario not
only is possible but is also beneficent to the interested
mobile device. More recently, authors of [17] propose a
more generic architecture for mobile D2D offloading and
build a first prototype for Android devices.

VI. Conclusion and Future Work

In this paper we proposed the problem of distributed
video compression for mobile devices in a D2D offloading
scenario. First, we formulated the problem mathemati-
cally and solved it as an optimization problem. Then,
we presented a real Android system that we built based
on the proposed architecture. We showed that the high
bandwidth offered by Wi-Fi Direct makes it possible for
long videos to be split in smaller chunks, while the chunks
were efficiently sent to nearby devices for compression.

As future work, we plan to create a more stable version
of the Android application in order to perform large-
scale experiments, involving volunteering students and
researchers. We also plan on extending the energetic mea-
surements to a broader range of mobile devices, so to cover
a more heterogeneous network.

VII. Acknowledgements
This research has been supported, in part, by Gen-

eral Research Fund 26211515 from the Research Grants
Council of Hong Kong, Innovation and Technology Fund
ITS/369/14FP from the Hong Kong Innovation and Tech-
nology Commission, and the European Commission under
the Horizon 2020 Program through the RAPID project
(H2020-ICT-644312).

References
[1] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile

cloud computing: architecture, applications, and approaches,”
Wireless communications and mobile computing, vol. 13, no. 18,
pp. 1587–1611, 2013.

[2] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,
“Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code offloading,” in Proceedings of IEEE
INFOCOM, 2012.

[3] “Wifi alliance: The worldwide network of companies that brings
you wi-fi,” http://www.wi-fi.org/, accessed: 2015-10-23.

[4] C. Shi, V. Lakafosis, M. H. Ammar, and E. W. Zegura,
“Serendipity: Enabling remote computing among intermittently
connected mobile devices,” in Proceedings of MobiHoc ’12, 2012,
pp. 145–154.

[5] J. M. Cabero, V. Molina, I. Urteaga, F. Liberal, and J. L.
Martin, “CRAWDAD data set tecnalia/humanet (v. 2012-06-
12),” http://crawdad.org/tecnalia/humanet/, Jun. 2012.

[6] J. Scott, R. Gass, J. Crowcroft, P. Hui, C. Diot, and A. Chain-
treau, “CRAWDAD data set cambridge/haggle (v. 2006-01-
31),” Jan. 2006.

[7] J. K. Laurila, D. Gatica-Perez, I. Aad, O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, M. Miettinen et al., “The mobile data
challenge: Big data for mobile computing research,” in Pervasive
Computing, no. EPFL-CONF-192489, 2012.

[8] S. Seuken, D. C. Parkes, E. Horvitz, K. Jain, M. Czerwinski,
and D. Tan, “Market user interface design,” in Proceedings of
the 13th ACM Conference on Electronic Commerce, ser. EC ’12.
New York, NY, USA: ACM, 2012, pp. 898–915.

[9] M. Hyder and K. Mahata, “An approximate l0 norm minimiza-
tion algorithm for compressed sensing,” in Acoustics, Speech
and Signal Processing, 2009. ICASSP 2009. IEEE International
Conference on, April 2009, pp. 3365–3368.

[10] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2004.

[11] “Ffmpeg: A complete, cross-platform solution to record, con-
vert and stream audio and video.” https://www.ffmpeg.org/,
accessed: 2015-10-16.

[12] T. Wiegand, G. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the h.264/avc video coding standard,” Circuits
and Systems for Video Technology, IEEE Transactions on,
vol. 13, no. 7, pp. 560–576, July 2003.

[13] Y. Zhao, L. Zhang, X. Ma, J. Liu, and H. Jiang, “Came: Cloud-
assisted motion estimation for mobile video compression and
transmission,” in Proc. of the 22Nd International Workshop on
NOSSDAV. New York, NY, USA: ACM, 2012.

[14] X. Zhao, P. Tao, S. Yang, and F. Kong, “Computation offloading
for h.264 video encoder on mobile devices,” in Computational
Engineering in Systems Applications, IMACS Multiconference
on, Oct 2006, pp. 1426–1430.

[15] R. Palit, A. Singh, and K. Naik, “Enhancing the capability
and energy efficiency of smartphones using wpan,” in Personal
Indoor and Mobile Radio Communications (PIMRC), 2011
IEEE 22nd International Symposium on, Sept 2011, pp. 1020–
1025.

[16] D. Kovachev, “Framework for computation offloading in mobile
cloud computing,” IJIMAI, vol. 1, no. 7, pp. 6–15, 2012.

[17] A. Mtibaa, K. Harras, K. Habak, M. Ammar, and E. Zegura,
“Towards mobile opportunistic computing,” in Cloud Comput-
ing (CLOUD), 2015 IEEE 8th International Conference on,
June 2015, pp. 1111–1114.

