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Abstract—The increasing complexity of smartphone applica-
tions and services necessitate high battery consumption but the
growth of smartphones’ battery capacity is not keeping pace
with these increasing power demands. To overcome this problem,
researchers gave birth to the Mobile Cloud Computing (MCC)
research area. In this paper we advance on previous ideas,
by proposing and implementing the first known Near Field
Communication (NFC)-based computation offloading framework.
This research is motivated by the advantages of NFC’s short
distance communication, with its better security, and its low
battery consumption. We design a new NFC communication
protocol that overcomes the limitations of the default protocol;
removing the need for constant user interaction, the one-way
communication restraint, and the limit on low data size transfer.
We present experimental results of the energy consumption and
the time duration of two computationally intensive representative
applications: (i) RSA key generation and encryption, and (ii)
gaming/puzzles. We show that when the helper device is more
powerful than the device offloading the computations, the execu-
tion time of the tasks is reduced. Finally, we show that devices
that offload application parts considerably reduce their energy
consumption due to the low—power NFC interface and the benefits
of offloading.

I. INTRODUCTION

Mobile users nowadays are demanding more and more
functionalities and sophisticated services to be supported by
their devices. Unfortunately, the more complex a functionality
or a service becomes, the more energy it typically consumes.
To this end, developers are starting to feel a lot of pressure,
due to the fact that advances on battery technology are
not able to keep pace with the energy demands of modern
applications. Even though there has been much interest in
enhancing smartphones’ lithium-ion battery capacity, any sig-
nificant improvement would take a long time to occur [1].
Eventually, a new generation of rapid-charging smartphone
batteries, like nanodot-based batteries [2], will be developed,
but these batteries may not be publicly available until late 2016
or 2017 [3]. To cope with these limitations, developers struggle
to carefully implement the heavy tasks of an application so
to not drain the battery very quickly, while still offering the
desired services to the users.

Recently, with the advent of cloud computing, one popular
adopted solution is computation offloading [4]; a method
where resource-intensive computations are executed remotely
in one or more powerful machines known as offloadees or

surrogates. Not only is this considered to be a potential way
to conserve battery power, it can also reduce the total execu-
tion time [5], [6], [7]. So far, many computation offloading
frameworks using Bluetooth or Wi-Fi have been developed.
However, despite having reasonable bandwidth or data rate,
they are still facing some limitations, such as: the interference
of other WiFi or Bluetooth devices, the Internet connection
requirement in the case of MCC, which implies higher energy
needs and higher delay [5], and the difficulty in detecting
available nearby devices for computation offloading through
WiFi-direct or Bluetooth [8].

In this paper we advance on the previous ideas and im-
plement for the first time, to the best of our knowledge, a
mobile offloading framework over NFC, a wireless protocol
based on Radio Frequency Identification (RFID) [9]. NFC
enables devices with a distance of less than 10 cm to exchange
small amounts of data [10]. The majority of recent Android
devices already implement this functionality. Although the
bandwidth of NFC is typically about 50-340 times smaller
than Bluetooth and Wi-Fi [11], NFC’s short range and op-
erational characteristics provide several advantages compared
to Bluetooth and Wi-Fi. For instance, NFC guarantees low
interference and has lower energy consumption [12], [13].
Many researchers believe that NFC has promising potential
for future applications; with many research groups working to
enhance and apply this technology [14], [10]. Several of NFC’s
advantages, especially its low—energy demands, its intrinsic
security that comes from the short-range communication, and
its current active development, make this technology highly
suitable for computation offloading.

We envision a not-so—distant future reality where Internet
of Things will surround us in every aspect of our life, with
objects interacting with each—other in a myriad of ways.
We believe that smart tables or smart desks, like Microsoft
Surface Tabletop [15] e.g., will be available in every home,
every office, and every bar. Combining the computational
capabilities of these smart surfaces with the potential of
NFC communication, we can easily see the benefits that
this technology enables when people put their NFC—capable
smartphones on the surface, as they normally do today. Making
use of the NFC offloading framework, a mobile device can
transfer all the heavy computations to the smart surface,
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reducing its energy consumption and quite often improving
the execution time of such heavy operations.

In this paper we investigate and bypass the current limita-
tions of the NFC protocol in order to design and build a fully
working offloading framework. In more detail; (/) First, we
modify the default NFC communication protocol to make it
work without user intervention and to be able to exchange
data bidirectionally; (2) We measure several characteristics
of our new NFC protocol, such as bandwidth and latency,
showing that bidirectional transmission of small data is fea-
sible; (3) Then, following the same techniques as previous
MCC frameworks—such as remote method invocation, we
implement an NFC-based computation offloading framework,
which is made possible thanks to our new NFC communication
protocol; (4) We identify typical smartphone applications that
can benefit from NFC computation offloading; (5) Finally,
we evaluate the performance of our framework using two
representative applications, showing that not only offloading
is possible but also convenient in terms of reduced energy
consumption and improved execution performance on the
mobile device that requests offloading.

The rest of the paper is organised as follows: In Section II
we position our paper with respect to relevant works in this
area; in Section III we present the design and implementation
of our several NFC communication protocols alongside with
the details of the offloading framework; in Section IV we
compare our different NFC protocols to choose the best one; in
Section V we present the final NFC offloading framework built
on top of the optimized NFC protocol; in Section VI we eval-
uate our framework through two representative applications
and discuss the experimental results; finally, in Section VII
we present the conclusion remarks and future work.

II. RELATED WORK

Much work has been done on exploring the concept of
computation offloading and applying it on mobile devices.
MAUI [5] supports code offloading from smartphones to
nearby servers or devices in order to minimize energy con-
sumption. The results show significant energy savings when
Wi-Fi is used, while when using 3G the results are not very
satisfactory. CloneCloud [6] aims to benefit directly from the
cloud, transforming a mobile application by migrating parts of
its execution to a virtual machine on the cloud. ThinkAir [7]
combines the advantages of these frameworks and works with
Wi-Fi and 3G offloading to nearby or remote surrogates.
Furthermore, ThinkAir allows for the computational power to
be dynamically scaled up or down on the cloud, enabling high
levels of flexibility for the developers.

More recently, Serendipity [8] introduces the concept of
mobile—to—mobile offloading in an environment with intermit-
tent connectivity. This system is capable of conserving energy
and increasing computation speed of low—power devices when
these offload heavy computations to more powerful ones. Nev-
ertheless, similar to other previous frameworks, Serendipity
relies on Wi-Fi, and the paper does not specify how to search
for and detect the available devices that are willing to help.

CPU

Quad-core 2.3
GHz Krait 400

Quad-core 2.3
GHz Krait 400

Name Memory oS

Xiaomi Mi 3 2 GB Android 4.4.4

Samsung Galaxy

Note 3 3GB

Android 4.4

TABLE I: Devices used in our experiments.

OPENRP advances in this direction by collecting data from in-
teractions between mobile users and building reputation scores
per mobile user and application type [16]. Honeybee [17] is
an offloading framework for mobile computing on Bluetooth
channels. Without having to rely on Wi-Fi, it guarantees
connectivity as long as other mobile devices equipped with
Bluetooth are available as well.

Seen that mobile code offloading has already become well
accepted and its advantages have been acknowledged by many
authors, researchers lately have been focusing on building
more solid frameworks that consider long neglected aspects,
such as security, fault-tolerance, caching, etc. [18]. Gordon
et al. [19] replicate mobile applications, which are split into
execution phases in mobile servers, efficiently selecting the
proper replica to proceed in the next phase, in order to
improve the end users’ quality of experience. Bouzefrane et
al. propose a security protocol for authentication between NFC
applications and proximal cloudlets motivated by the fact that
NFC applications can be computationally demanding [20].

However, the current state of their project is quite pre-
liminary and does not present any real implementation. Fur-
thermore, the design is quite limited, due to the fact that
it requires the user to constantly tap on the device: once
when offloading the security computation and another tap
when receiving the result. Conversely, in this work we have
redesigned the NFC communication protocol to eliminate
the need for user intervention, which enables a convenient
and automated offloading process. NFC-based computation
offloading does not need to consider most of the problems that
traditional offloading frameworks face. For example, the low—
range communication capabilities of NFC eliminate the need
for data encryption, which of course is an overhead that current
frameworks have to deal with [21]. Moreover, our architecture
allows the mobile devices to automatically connect with the
powerful offloadee entities, since they will be in close NFC
proximity, eliminating the need for long registration process as
presented in [7] or intentionally neglected as in other works.

III. DESIGN AND IMPLEMENTATION

In this section we describe the requirements and the steps
followed to implement a functional computation offloading
framework between smartphones over the NFC communica-
tion channel. First, we describe briefly the limitations of the
current NFC hardware and software interfaces, which make it
difficult to build a fully functional NFC offloading framework.
Then, we describe the steps we undertook to overcome such
limitations and build the framework. In the rest of the paper
we refer to the device asking for computation offloading as
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Main Device Offloadee Device

Fig. 1: Two-tap Protocol.

the main device or the offloading device, while to the device
executing the offloaded computation as the offloadee device or
simply the offloadee. In Table I we show the specs of the two
devices used in our experiments; a Xiaomi Mi 3 as the main
device and a Samsung Galaxy Note 3 as the offloadee device.

A. Preliminaries

1) Limitations of NFC Android API: The basic imple-
mentation of the NFC in Android is based on Nfc Data
Exchange Format (NDEF)'. The data transmission can only be
unidirectional, which of course does not allow for successful
computation offloading since the result of the offloaded task
cannot be sent back to the offloading device. Moreover, to
trigger the transmission of an NDEF message (NdefMessage)
the Android operating system requires the user to tap on the
smartphone’s screen.

We implemented a functional prototype which requires user
intervention in several steps, as depicted in Figure 1. Precisely,
the user has to tap once on the main device’s screen to send
the task for remote computation to the offloadee device. Once
the remote computation is finished, the user has to tap on the
offloadee’s screen to send back the result to the main device.
The need for constant user intervention makes this strategy
unusable in practice. In particular, even if the requirement of
taping the main device—which usually be the user’s device—
could be tolerated, the requirement of the second tap on the
offloadee device is not realistic. For this reason, we investigate
other solutions that allow more flexibility and transparent
implementation.

2) Utilising Host-based Card Emulation: Tapping only
once at the beginning and allowing the offloadee device to
automatically send back the result without a second tap creates
more convenient user experience and can work on surface
devices. In order to implement such functionality, we use the
Android NFC Host-based Card Emulation (HCE) service?,
which allows any NFC-enabled smartphone to emulate an
NFC card so that it can be read directly by an NFC card
reader. In our case, the offloadee device emulates the NFC card
while the main device emulates the NFC card reader. The card
reader communicates with the emulated card by exchanging

Thttp://developer.android.com/reference/android/nfc/tech/Ndef.html
Zhttp://developer.android.com/guide/topics/connectivity/nfc/hce.html

L]

Send data

Connected

Command Appy

Request the Result

Receive the Result |4

Next computation

Main Device

Return Computation
Result

Offloadee Device

Fig. 2: HCE Protocol.

application-level packets called Application Protocol Data
Units (APDUs) and by means of Application ID (AID), which
are used as application selectors.

When the environment is set up, the card reader searches for
the emulated card and once the emulated card is detected the
the card reader creates an APDU command to be sent to the
emulated card to read the desired data. The command consists
of a header and an AID. Once the emulated card receives the
command, if the AID specified in the command is the same as
the AID of the application, the function can immediately return
the desired data concatenated with a few bytes designating the
status word, which specifies that it is the message in response
to the initial APDU command.Upon receiving the response,
the card reader checks the status word bytes to ensure that it
is the desired message.

The HCE Implementation is depicted in Figure 2. The
most significant advantage of using the HCE implementation
compared to the basic NdefMessage version is that it allows
the main device and the offloadee device to communicate
without tapping. However, it is difficult to implement for an
offloading framework, since the current Android NFC API
allows only one role for each device, either as an NFC
reader or as an emulated card. The solution we adopt in
this implementation was to first utilise the basic NdefMessage
transfer method to send computation data before utilising the
HCE service. When the user taps on the screen, the main
device sends the computation data in NDEF format. Once the
transfer is complete, the main device is transformed into a
card reader. The offloadee, on the other hand, once receives
and executes the computation, is transformed into an emulated
card. The main device will then receive the computation
result(s) automatically by reading the emulated card on the
offloadee device. The limitations of this implementation are
twofold: (i) the user still needs to tap the screen on the main
device and (ii) the offloading process can be realised only
once, since the main device becomes a card reader and is not
able to send NDEF messages anymore.

B. Towards No-tap, Multiple Transfer Offloading

We enabled multiple data exchange between the two de-
vices by enabling both the card reader function and the
card emulation function alternately on each smartphone. This
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Fig. 3: The Reader Mode Disabling-Enabling Protocol

approach requires both devices to constantly switch roles until
all the computation offloading is completed, which justifies
that the implementation is not trivial. However, we explore and
implement two different strategies, namely: (i) the reader mode
disabling-enabling method and (ii) the reader mode enabling-
disabling method. Other than the number of transfers, there
are two other significant advantages these methods possess:

1) No tapping is required. Both methods only utilize the
HCE service and therefore, data reading works automatically
without any tapping.

2) Only one identical application is required. While other
methods require different applications to be installed on the
main and offloadee devices—i.e. client—server components,
this method only requires the same identical application to
be installed on both devices.

C. The Reader Mode Disabling-Enabling

As summarized in Figure 3, the main idea of this method is
to disable the reader mode on the one device before enabling
the reader mode on the other device . The implementation
relies on the emulated card service method called onDeacti-
vated(), which will be called only when the connection to the
card reader is lost. As mentioned before, the CardEmulation-
Service allows the emulated card mode to be automatically
enabled. In order to switch role to the card reader mode,
we found that the device only needs to call the enableRea-
derMode() function. Similarly, calling disableReaderMode()
would switch the role back to the emulated card mode.

At the beginning, the main device acts as an emulated
card, while the offloadee device acts as a card reader. When
the offloadee device finishes executing the offloadable task, it
immediately switches role and becomes an emulated card by
disabling the card reader mode. Once the card reader mode
is disabled, the connection link to the emulated card on the
main device breaks down. This triggers the onDeactivated(),
which then alerts the main device to switch role and become

Connected

Command APDU

¥seq Uews

Connected

Command APDU

Request the Result
Receive the Result Fosul
Next computation

Return Computation
Result

Offloadee Device

Main Device

Fig. 4: The Reader Mode Enabling-Disabling Protocol

a card reader so that it can read the computation result from
the offloadee device.

There are two challenges in the implementation of this
strategy: (i) enabling role switching and (ii) solving the
hardware delay problem. The first one is the trickiest. Even
though we only need to call enableReaderMode() and dis-
ableReaderMode( ), those functions can only be called from an
Activity or a FragmentActivity class. The solution we adapt
is to create a central Activity class, namely CentralActivity. In
terms of switching role from the card reader to the emulated
card, we apply the procedure utilised by Android’s CardReader
sample application. Using this procedure, the lines of code
listed below are added into the card reader class.

private WeakReference<MessageCallback> messageCallBack;
public interface MessageCallback (){
public void onMessageReceived ();

}
public CardReader (MessageCallback msg){
this . messageCallBack=new WeakReference<MessageCallback >(msg);

}

Then, the CentralActivity class is modified to implement
CardReaderMessageCallback and a new override method
onMessageReceived() is added. We finally put disableRea-
derMode() within the override method. By applying this
procedure, every time the card reader finishes interpreting
the received message, it only needs to call messageCall-
back.get().onMessageReceived() to disable the reader mode.
In order to switch role from the emulated card to the card
reader, once onDeactivated() is called, a new intent is created
to start CentralActivity. Once the activity runs, it will execute
enableReaderMode() within the onNewlntent() method.

Regarding the second challenge, during the testing phase
we notice that if we directly enable the reader mode once
the onDeactivated() is called, the new connection will not
be created, and the card reader will not be able to read the
emulated card. We then discover that the hardware needs some
small amount of time before it can be ready to enable the
reader mode. The process of selecting the proper amount of
required delay is discussed in Section IV-A.
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D. The Reader Mode Enabling-Disabling

This implementation differs from the previous one only
in the order we disable and enable the reader mode on
each device. By making such change in the implementation
protocol, we discover that if we manage to enable the reader
mode on one device before disabling the reader mode on the
other, no delay is required; the connection immediately starts
once the disabling reader mode occurs. The summary of this
implementation is given in Figure 4.

We need to enable the card reader on the main device
while the connection is running. One solution is to create
a new thread which initializes a new intent for starting the
central activity. One important note, however, is to ensure that
the intent starts after processCommandApdu() has returned
the APDU response. Therefore, we set a delay on this new
thread to start after ¢; ms. On the offloadee device, we have
to ensure that the reader mode is disabled after the card reader
on the main device has been enabled. Again, we set a delay
on the disabling card reader of ¢, ms. We perform extensive
experiments to find the appropriate values for ¢; and ¢,. We
discuss these findings in Section I'V-B.

IV. CHOOSING THE MOST PERFORMANT NFC PROTOCOL

In this section we present the experiments we perform
to measure the performances of the reader mode disabling-
enabling and enabling-disabling protocols in terms of latency
and bandwidth. We evaluate them on two Xiaomi Mi 3 and
one Samsung Galaxy Note 3 phones, whose specifications are
in Table I. The basic experiment setup consists on using one
of the devices as the main device and another as the offloadee.

A. Testing the Reader Mode Disabling—Enabling Protocol

As we can see from Figure 3, the most important parameter
of the disabling—enabling protocol is the delay ¢. Small
values of ¢ could enable low latency and high bandwidth, but
could increase the chances of transmission failure, since the
hardware may not be able to switch in such short time.

We conduct an experiment using different values of ¢, while
sending and receiving messages of 2KB for 50 times (round—
trips). Notice that we perform this round—trip experiment of
small data, instead of single transmission of larger data, due to
the limitations of the NFC packets. Indeed, Android guidelines
recommend the NFC messages to be smaller than 1KB. but
our experiments show that these packets can contain up to
2KB of data. So, if an application wants to transmit more than
2KB it has to do so by performing more than one round-trip.
This process is handled

t (ms) Success Rate automatically by our of-
680 5% floading framework, as we
690 40% explain in detail in Sec-
700 82% tion V-A. We consider the
710 82% experiment successful if

and only if all 50 round
trips were correctly per-
formed. We repeat the
experiment 20 times for

TABLE II: The success rate of
the disabling-enabling protocol
for variable values of .

each value of ¢ and count the number of successful experi-
ments, which divided by 20 gives the success rate: percentage
of experiments that successfully accomplished 50 round—trips.
The results of these experiments are presented in Table II,
from which we select the smallest value of ¢ such that the
success rate is at least 80%, which is ¢ = 700 ms.

B. Testing the Reader Mode Enabling-Disabling Protocol

As we can see from Figure 4, the enabling—disabling
protocol is characterized by two delays: ¢, which is needed
to enable the card reader, and to, which is need to disable
the card reader mode. One indicator for finding ¢; is to look
for the lowest possible time delay while ensuring that the role
switching occurs after the device has sent an APDU response.
In searching for the

t1 (ms) Success Rate optimal ¢, on the

250 0% other hand, we have

260 0% to make sure that

270 30% the reader mode is

280 55% disabled after the reader

290 60% mode on the other

300 65% device is  enabled.

310 95% When at least one of

these values is too

TABLE III: The success rate of low, the round-trip
the enabling-disabling protocol data transmission
for delay values o = 1000 ms and will stop with error
variable ;. message: “Error
communicating with

card: android.nfc.TagLostException: Tag was lost”.We first
find the value of t; by initially setting ¢ equal to 1000
ms so that it will not hinder the round—trip transmission.
Once t; is selected,

t2 (ms) Success Rate to can then be deter-
50 0% mined similarly. We fol-
70 0% low the same process as
90 0% in the previous section,
100 85% sending round—trip mes-

sages of 2 KB for 50
times, to measure the
success rate of the ex-
periments. The results
are presented in Ta-
ble III and Table IV. From the first experiment we fixed
t1 = 310 ms and from the second ¢35 = 100 ms.

TABLE 1V: The success rate of
the enabling-disabling protocol
for ¢4 = 310 ms and variable t,.

C. Disabling—Enabling vs. Enabling-Disabling Protocol

Figures 5a and 5b show the latency and the bandwidth
results of the two protocols when sending data of different
size. The used delay values are t = 700 ms for the disabling—
enabling and t; = 310 ms, to = 100 ms for the enabling—
disabling. The enabling—disabling protocol presents better
performance, with latency being around 50% smaller and
bandwidth being about 1.6 times higher compared to the
disabling—enabling.
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Fig. 5: Latency, Bandwidth, and Role Switching delay when sending data of different size using the Disabling-Enabling
protocol with delay ¢ = 700 ms and the Enabling-Disabling protocol with delays {1 = 310 ms and ¢, = 100 ms.

To better understand and calculate the duration of the role—
switching process, we show in Figure 6 our NFC protocol
of sending the data in round-trip. We define T4ppy as the
time needed to send an APDU command from the card reader
to the emulated card and sending the APDU response backto
the card reader. We define Tiyitching as the time needed for
both devices to switch roles. Finally, we define T} ound—trip as
the total time it takes for one device to send the request, for
devices to switch roles, and for the device to get the response
back. As we can see, the formula to calculate the time for one
round-trip can be expressed by the following equation:

7

round—trip 2-Tappu + Tswitching-

The formula for 2 round-trip transmissions,
TswitchingAvg 18 the average of all Tsyitching, 18:

assuming

9.7

round—trip

4- TAPDU +3- Tswz’tchingAvg-

7@

round—trip + TswitchingAvg

Iterating the formula for n round—trips, we obtain:

T(")

round—trip 2n-Tappu + (2n - 1) : TswitchingAvg

(n)
Tround—trip —2n-Tappu

2n—1

Therefore: TsyitchingAvg =

Knowing, from experimental results, that Ty ppyy for a mes-
sage of 2 KB is 329 ms, we can use the previous formula
to calculate the average value of the switching time for both
protocols. In Figure 5c we show the calculated values of
TswitchingAvg When sending data of different size. Based on
these results, it is apparent that the average switching time of
the reader mode enabling—disabling protocol is less than half
of the reader mode disabling—enabling protocol.

V. FINAL OFFLOADING FRAMEWORK

After extensive testing and evaluation, presented in Sec-
tion IV, we conclude that the enabling-disabling strategy
presents the lowest data transmission delay and highest band-
width of all proposed protocols. Hence, we build the offloading
framework library on top of this communication protocol.

The Card Reader The Emulated Card

- =)
T g ey |
(@)
o
'<_( \ C
e —=-=-—- — -
g . Role Switching | | Tswitching
g The Emulated Cdrd | The Card Reader
o
g e s | -
o PP -
o™ >
g
Re
y “SPonse Zpp, il

Flg 6: Definition of TAPDUs Tswitching» and Troundftrip'

A. Supported API

To enable bidirectional transmission of large quantity of
data, we design a MessageStorage class which stores two two-
dimensional byte arrays of messageToSend—the message which
will be sent by the emulated card as an APDU response, and
messageReceived—the message which is received by the card
reader from the emulated card. This class implements a data
transmission protocol based on the enable—disable protocol,
which allows developers to transparently send and receive
large quantity of data that would be conversely impossible
to achieve with the default NFC protocol. The class exposes
the following methods:

o SetMessageToSend(byte[] message, int index) sets the
messageToSend|index] to the message value. It is called by
the emulated card to prepare the APDU response.

o GetMessageToSend(int index) returns the value of
messageToSend[index]. It is called by the emulated card
upon receiving an APDU command. The emulated card then
sets it as the APDU response and sends it to the reader.

o SetMessageReceived(byte[] message, int index) sets
the messageReceived[index] to the message parameter
value. Once the card reader receives an APDU response from
the emulated card, it stores the value by calling this method.

o GetMessageReceived(int index) returns the value of
message Received|index]. Tt is called by the card reader to
retrieve the result received by the emulated card.

On the emulated card, the APDU response is constructed
by storing the desired message into the message byte array
and calling the SetMessageToSend(message, 0) function. If
the message is bigger than 2KB, we divide it into n arrays
of size 2KB or smaller. Then, each of these arrays is stored
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sequentially inside the class object. When the emulated card
receives the command APDU containing the AID, it reads
the last 2 digits to get the index and returns GetMessage-
ToSend(index). Once the card reader receives the message,
it immediately calls SetMessageReceived(received_message,
index). For further processing, it is able to get the received
message easily by calling GetMessageReceived(index).

B. Advantages and Limitations

The advantages of our proposal can be categorised in
the following four main points: (1) Fully automatic: Our
framework removes the requirement of tapping. We implement
the new NFC protocol using the NFC/HCE service which
doesn’t require user intervention, making it possible to trans-
parently run applications in a convenient user experience. (2)
Portability: Application developers do not need to implement
specific application versions for different device roles, i.e.
offloader and offloadee. They only need to install the same
identical application on both devices and specify the role of
each device through the framework’s settings. (3) Application
execution time improvement: When a device offloads the
heavy tasks of an application to a more powerful offloadee,
the overall execution time of the application is reduced. (4)
Device energy reduction: The energy consumption of the
device that offloads the heavy tasks is reduced, since it is the
offloadee that takes care of the computation and because the
NFC data transmission is very low—energy consuming.

The limitations of our framework, which are inherited by
the existing underlying technologies are twofold: (1) Limited
bandwidth and (2) small APDU packet size. The main draw-
back that comes from these limitations is that the current
implementation of the framework is not suitable for data—
intensive applications, which would need to transfer high
quantity of data during the offloading process.

C. Characteristics of applications suitable for NFC offloading

Considering the pros and cons of our NFC protocol and of
our NFC offloading framework, the best application candidates
suitable for NFC offloading should have the following charac-
teristics: (1) small input size, (2) small output size, and (3) high
computational needs. Based on these, the proposed framework
is appropriate for computationally intensive applications that
do not require high data transfers, such as (1) encryption,
(2) mobile payments, (3) cryptocurrencies, (4) mathematical
computations, etc.

VI. EXPERIMENTS

In order to evaluate the performance of our proposal we
utilise two of the three puzzles that are proposed by Google
in its Google Optimization Tools®. Specifically, we implement
the N Queens mathematical puzzle [22] and the Rivest-Shamir-
Adleman (RSA) encryption algorithm [23]. In the rest of this
section, we initially present these two applications and then we
discuss their performance in terms of (1) execution duration
and (2) energy needs.

3https://developers.google.com/optimization/puzzles

e N Queens is a classic puzzle of placing N queens on
a N x N chess board so that no queen can attack another
in one move. In our implementation, we find how many
are valid solutions for a given N. By using a backtracking
algorithm, our algorithm complexity is O(n!). N Queens is a
representative application that is generally adopted for its high
computational requirements. Our mechanism is able to assist
more sophisticated applications and we hope to be used on the
implementation of future killer applications in the highly active
area of NFC. During the offloading process of the N Queens
Computation the main device, which initially is the emulated
card, runs the N Queens application and the number and the
inputted N are stored in the messageToSend two-dimensional
byte arrays in [application_number — N] format. When the
offloadee device, which initially is the card reader, is within
range, the main device sends the value of messageToSend as
the response APDU. Once the offloadee device receives the
details of the sample application, it immediately executes the
computation based on the received N and stores the result in
its messageToSend variable. After both devices have switched
roles, the main device reads the result from the offloadee
device.

e RSA is an asymmetric cryptographic algorithm and is
comprised of three main parts: 1) Key generation: the key
generation process aims to generate public and private keys
from two large prime numbers. Each prime number is at
least 2048 digits, which is considered to be secure based on
2014 technology [23]. 2) Encryption: a given plain text is
encrypted using the generated public key from the previous
process. 3) Decryption: the private key is used to decrypt the
encrypted text. We offload the key generation and encryption
processes in this application. The decryption is performed on
the main device after the offloading is finished to ensure that
the transferred data are not corrupted. We use the java.security
API with 2048 bits as the key length in the key generation
process. Given a plain text as the input that is no more than
2048 bits, the computation produces a set of private and public
keys and the encrypted message. On the main device, the
application prompts the user for the plain text file. Once the
user presses the Start button, the application reads the file and
gets the plain text in bytes. The plain text is then stored in
messageToSend. When the offloadee device is within range,
the main device sends the message stored in messageToSend.
Upon receiving the message, the offloadee immediately starts
the RSA computation: keys generation and encryption. It then
stores the public key, the private key, and the decrypted text in
messageToSend. Since the total lengths of the result is more
than 2 KB, it is divided into two separate byte arrays. The
first byte array stores the concatenated decrypted text and the
public key because the decrypted text is always 512 B (based
on the key length) while the public key is always less than
1500 B. The second byte array stores the private key. After
both devices switch roles, the main device reads the whole
result by sending two separate APDU commands and store all
the received responses in messageReceived.
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Fig. 7: The execution time duration and the energy consumption of the N Queens puzzle and the RSA encryption algorithm.
All the plots depict the average of 50 repetitions and the error-bars show the standard deviation.

A. Execution Time

In the case of N Queens, we measure the execution time
for N = {9,10,11,12,13,14,15} using a Xiaomi Mi 3 and
a Samsung Galaxy Note 3. We measure the time for the case
of the local execution, in both devices, and for the remote
execution we use the Xiaomi Mi 3 as the main device and
the Samsung Galaxy Note 3 as the offloadee device. This
is because based on the results of the local execution, the
computations on the Samsung Galaxy Note 3 phone are much
faster than the computation on the Xiaomi Mi 3, therefore
using the Samsung Galaxy Note 3 as the offloadee device
is be more advantageous. Note that the duration we measure
is the time the main device needs to offload the application
and receive the output of the remote execution. For small
values of N, the offloaded application has worse performance
that the local ones regardless of the used device. This is due
to the communication overhead. But for high values of N,
the Xiaomi Mi 3 requires much more time if it executes the
application locally instead of offloading it. For the case of
the RSA application, we measure the time duration of the
local execution (on both devices) and the offloaded execution
where the Xiaomi Mi 3 is the main device and the Samsung
Galaxy Note 3 is the offloadee device. Xiaomi Mi 3 requires
almost 2.5 more time to execute the application locally than
the Samsung Galaxy Note 3. However, if the application is
offloaded, Xiaomi Mi 3 requires half time than it requires
to execute it locally. Both plots 7a and 7b of Figure 7
show that the time required for the computation offloading is
significantly close with the local computation duration of the
offloadee device instead of the local computation duration of
the offloader device. Hence, offloading computation using our

framework on a more powerful offloadee device will provide
shorter time duration than running it locally.

B. Energy Consumption

We use the Samsung Galaxy Note 3 for the power mea-
surement because in order to measure the energy consumption
accurately we need to remove the battery and the battery of
the Xiaomi Mi 3 is not removable. We use the highly adopted
Monsoon Power Monitor®.

For the N Queens application, we measure the energy
consumption for N = {9,10,11,12,13,14, 15} first for the
case of the local execution and then for the remote one. For
the latter, we use the Samsung Galaxy Note 3 as the main
device and the Xiaomi Mi 3 as the offloadee device because we
are interested in the energy consumption of the main device.
Figure 7c shows the results of both measurements. For small
values of N (i.e. N < 12) the offloading is not beneficial in
terms of energy, but for N > 12 the benefit is increasing and
for the case of N = 15, the main device consumes up to 15
times less energy due to the offloading. Figure 7d shows how
the ratio of the energy needs of the offloaded computation to
the local computation in the N Queen problem is decreasing
as the hardness of the computations is increasing.

Regarding the RSA application we measure the energy
consumption of both the local computation and offloaded
computation of RSA key generation and encryption on a
Samsung Galaxy Note 3. In the case of the remote execution,
we use the Samsung Galaxy Note 3 as the main device and
the Xiaomi Mi 3 as the offloadee device and we present the
measurements on Figure 7e. In the case of offloading, the main

“https://www.msoon.com/LabEquipment/PowerMonitor/
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device requires less than 20% of the energy required by the
case of local execution. By these experiments we argue that
there is a significant benefit of using our framework to offload
heavy computations.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed and implemented the first NFC
offloading framework for Android devices. First, we proposed
a new NFC communication protocol that circumvents the
limitations of the default Android NFC protocol. Our proto-
col eliminates the requirement of user intervention, working
automatically without needing users to tap on the device’s
screen for data transfer. Furthermore, our protocol enables
a bidirectional communication between two devices, which
paved the way towards building the NFC offloading frame-
work. Finally, we implemented the first known, to the best of
our knowledge, NFC-based computation offloading framework
between two smart devices. We implemented two applications
that use the framework to offload heavy computations from
one main device to an offloadee device. We showed that
when the offloadee device is more powerful, the execution
time of the offloaded task is improved. We also showed that
the main device is able to reduce its energy consumption
when offloading the computations, due to the low—energy
consumption of the NFC interface.

We observed several limitations of our framework, mostly
due to the underlying technologies that NFC is built upon.
The main problem we faced was the low bandwidth of the
data transmission, with values around 15 — 25 Kbps, which is
cause by the existing hardware that allows only one message
per connection. These make the framework not suitable for
several types of applications, in particular those that need to
transfer many data during the offloading process. However,
any new NFC chip that can support multiple messages per
connection will increase the bandwidth significantly and broad
the applicability of NFC. We plan to extend our framework
to make it more heterogeneous by supporting other operating
systems and devices, such as tablets, laptops, and desktops
with external NFC readers. Furthermore, we will progress the
current API to expose more functionalities to the developers.
Finally, we are currently investigating techniques to increase
the bandwidth and support a broader range of applications and
to complement the NFC framework with parallel connections
between the devices using Bluetooth and/or WiFi—direct.
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