
Fides: A Hidden Market Approach for Trusted
Mobile Ambient Computing

Dimitris Chatzopoulosú, Pan Huiú, Di Huangú
ú Department of Computer Science and Engineering, Hong Kong University of Science and Technology

Abstract—We propose Fides, a computation o�oad-

ing mechanism for mobile devices based on trust be-

tween them.Fides provides functionalities to the appli-

cation developers in terms of (i) application splitting

and (ii) metric proposal, according to which the of-

floading decisions will be made. A collective intelligence

mechanism is learning the parameters of the ambient

environment and selects the proper nearby devices

(helpers) to aid the device that is asking for help (aided)

via a linear complexity online algorithm. Experiments

in android mobile devices show how user’s quality

of experience can be improved in terms of battery

consumption and delay minimisation.

I. Introduction
The needs of modern mobile applications motivate re-

search works in mobile cloud computing where parts of the
applications are o�oaded to more capable cloud servers
[1], [2], [3]. However, the use of remote servers implies
Internet access which can not be available or cheap and
also can be energy harvesting [2]. Furthermore, network
saturation in popular locations is reality and motivates the
research activity in 5G technologies where one of the main
goals is to solve the bandwidth sharing problem in crowded
environments. Concluding, the connection between two
smart devices in the same area using WiFi direct can be
more energy e�cient and reliable.

The necessity of Fides comes from the fact that the well-
behaving participants (helpers) should be acknowledged
and helped while free riders should be put aside. Each
of its layers works transparently and autonomously fol-
lowing the principles of hidden market design [4]. Fides
explores and connects with nearby devices (CONNECT),
learns and estimates their trustworthiness (LEARN) and
provides a low complexity algorithm for computation
o�oading (DECIDE). Users who wish to expose their
computational capabilities to the mechanism have only
to specify the amount of their computational resources, a
lower bound on their smartphone utilization and an upper
bound on their battery level via a simple interface.

II. Mobile Application
Most mobile applications are built via an object oriented

programming language, which means that they are based
on a set of classes. A subset of them can be executed by an-
other device (o�oadable). We expect from the developers
who use Fides mechanism to define all the possible points

CONTACT
MANAGER

APPLICATION
MANAGER

RESOURCE
MANAGER

APPLICATION
PROFILER

NEIGHBORHOOD
MANAGER

METRIC
MANAGER

PAYMENT
MANAGER

DECISION
MAKER

CO
NN

EC
T

LE
AR

N
DE

CI
DE

Fig. 1: The three-layer architecture of Fides.

in the application execution where the application can be
split. In Java programming this can be done by putting
the flag @splitable at the definition of a method that can
be executed to another device and the flag @split at the
call of the splitable methods that she wants to execute
to another device. Some representative applications that
could benefitted by Fides are video compression, feature
extraction in image processing (e.g face recognition and
scene understanding in surveillance systems) or mobile
augmented reality applications like Microsoft HoloLens.

III. Online Algorithm

A. Credit Managment and Neighbors’ Reputation

In order to use the Fides mechanism, one user has to
earn some credits first. Every device uses the application
profiler (AP) to calculate the extra burden of an additional
task. Given the current state and the new state AP
estimates the cost of serving the request for help. The
extra burden depends on the recourses as well as the
network overhead to run the task. After estimating the
computational cost, any nearby user bids to the interested
for o�oading user and given the bids and the reputation of
each user she selects the proper ones using the algorithm
that presented below. Regarding the reputation calcu-
lation contact manager encapsulates a collective intelli-
gence scheme where each user in the neighborhood, who
participated in a code o�oading that has just finished,
broadcasts her updated opinion for any user with whom
she interacted. After the reception of information by a
trusted friend, any user updates her opinion as well.

INFOCOM 2015 Student Workshop (Poster Session)

978-1-4673-7131-5/15/$31.00 ©2015 IEEE 86

1 2 3 4
0

1

2

3

4

5

E
xp

lo
ra

tio
n

tim
e(

s)

Number of nearby devices

(a)

5 10 15 20 25 30 35
0

2

4

6

8

Id
le

 T
im

e(
s)

Amount of Data(MB)

 One Dev
 Two Devs
 Three Devs

(b)
0 1 2 3 4 5 9 10

0

20

40

60

80

100

Number of threads

 CPU utilization before receiving tasks
 CPU utilization after receiving tasks
 offloading Execution Time(s)

(c)

Fig. 2: The time needed to explore the neighborhood and the idle time while waiting for the results are increasing with
the number of nearby devices and the result size. Helper’s delay response depends on her current utilization and in
the number of running threads.

S E

Local exec

n|N
i

Õ(t)|

n2

n1
c1 c2 c|Ao

Õ |

Fig. 3: State Diagram of the proposed online algorithm.

B. Algorithm

We propose an online algorithm with linear complexity
to the number of o�oadable classes and to the possible
helpers and runs in the DECIDE layer of Fides. The
inputs to the algorithm are a credit budget and a trust
score and the output is a set of helpers. Its most heavy
part is a preprocessing part which sorts the neighbors list,
which detected by the CONNECT layer, and the classes
list and can be executed proactively by the LEARN layer
of Fides. Figure 3 depicts the algorithm’s functionalities
and state space where for visualization reasons only a
representative subset of the edges is shown. Each edge
between two nodes in the state space represents the metric
cost of executing one class at one helper given that an-
other class will be executed at another helper. We expect
links between the same helpers to have lower metric cost
because the execution of two classes in the same device
is lower that the execution of the same classes in two
di�erent devices because of the lower networking cost.
Of course this also a�ects the credit cost. The two red
and bold lines indicate two possible solutions of di�erent
scenarios. The continuous line indicate a solution in which
all the o�oadable classes are executed remotely while in
the dashed solution the budget is not enough for all the

classes and only the most critical are o�oaded.

IV. Implementation & Evaluation
We implement the basic functionalities of Fides using

Android APIs and prototyped it on Google Galaxy Nexus,
Samsung Galaxy SII, and Motorola Moto G. To perform
the task o�oading, we use, WiFi direct to establish the
connection between the devices.Fig. 2a shows that the
time needed to explore the neighborhood and find the
nearby devices is increasing in the number of the devices.
Fig. 2b depicts the idle time of aided device while waiting
for the results of the o�oaded classes as a function of the
data needed by the class to execute properly. Each color
of Fig. 2b represents a di�erent number of helpers. The
exploration time is increasing in the number of nearby
devices while the idle time is decreasing because the
application is divided into smaller parts. Fig. 2c shows
how the current utilization and the number of the threads
in the helper a�ects the response of the helper in terms
of delay. The x-axis is the number of the threads in the
helper. To produce this plot we o�oaded a BubbleSort
instance of 20000 integers in a quad core Moto G.

References
[1] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang,

“Thinkair: Dynamic resource allocation and parallel execution
in the cloud for mobile code o�oading,” in INFOCOM, 2012
Proceedings IEEE, 2012, pp. 945–953.

[2] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman,
S. Saroiu, R. Chandra, and P. Bahl, “Maui: Making smartphones
last longer with code o�oad,” in Proceedings of the 8th Interna-
tional Conference on Mobile Systems, Applications, and Services,
ser. MobiSys ’10, 2010, pp. 49–62.

[3] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: Elastic execution between mobile device and
cloud,” in Proceedings of the Sixth Conference on Computer
Systems, ser. EuroSys ’11, 2011, pp. 301–314.

[4] S. Seuken, D. C. Parkes, E. Horvitz, K. Jain, M. Czerwinski, and
D. Tan, “Market user interface design,” in Proceedings of the 13th
ACM Conference on Electronic Commerce, ser. EC ’12, 2012, pp.
898–915.

INFOCOM 2015 Student Workshop (Poster Session)

87

